Water splitting with silver chloride photoanodes and amorphous silicon solar cells.

نویسندگان

  • Antonio Currao
  • Vanga Raja Reddy
  • Marieke K van Veen
  • Ruud E I Schropp
  • Gion Calzaferri
چکیده

A thin silver chloride layer deposited on a conducting support photocatalyzes the oxidation of water to O(2) in the presence of a small excess of silver ions in solution. The light sensitivity in the visible part of the spectrum is due to self-sensitization caused by reduced silver species. Anodic polarization reoxidizes the reduced silver species. To test its water splitting capability, AgCl photoanodes as well as gold colloid modified AgCl photoanodes were combined with an amorphous silicon solar cell. The AgCl layer was employed in the anodic part of a setup for photoelectrochemical water splitting consisting of two separate compartments connected through a salt bridge. A platinum electrode and an amorphous silicon solar cell were used in the cathodic part. Illumination of the AgCl photoanode and the amorphous Si solar cell led to photoelectrochemical water splitting to O(2) and H(2). For AgCl photoanodes modified with gold colloids an increased photocurrent, and consequently a higher O(2) and H(2) production, were observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting

Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of differe...

متن کامل

Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells.

Dye sensitized solar cells (DSSCs) use low-cost materials, feature tunable molecular sensitizers, and exhibit quantum efficiencies near unity. These advantageous features can be exploited in the context of solar water splitting by functionalizing DSSCs with catalysts for water oxidation and reduction. This article will cover the development of photoanodes for water splitting DSSCs from the pers...

متن کامل

Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silic...

متن کامل

Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.

Indium tin oxide (ITO) surfaces of triple junction photovoltaic cells were functionalized with oxygen evolving catalysts (OECs) based on amorphous hydrous earth-abundant metal oxides (metal = Fe, Ni, Co), obtained by straightforward Successive Ionic Layer Adsorption and Reaction (SILAR) in an aqueous environment. Functionalization with Fe(iii) oxides gave the best results, leading to photoanode...

متن کامل

Enabling unassisted solar water splitting by iron oxide and silicon

Photoelectrochemical (PEC) water splitting promises a solution to the problem of large-scale solar energy storage. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 3 11-12  شماره 

صفحات  -

تاریخ انتشار 2004